Power Shifting Opportunities on BG/Q Using Memory Throttling

Bo Li
Virginia Tech

Edgar A. León
Lawrence Livermore National Laboratory

Overview
- Shift power to resources on the critical path
 - Characterize code phases/regions/physics
 - Leverage IBM Blue Gene/Q’s memory throttling
 - Minimize impact on time-to-solution
- Contributions
 - Demonstrated significant power shifting opportunities
 - First to employ real throttling on a supercomputer
 - Linear regression model to guide per-region throttling

Memory Throttling on BG/Q
- BG/Q node architecture
 - 16 A2 cores @ 1.6 GHz, 16 GB memory @ 1.33 GHz
- Kernel_SetPowerConsumptionParam(X)
 - Add X DDR idle cycles for each memory access
 - Node granularity
- Power measurement infrastructure
 - EMON2 high-resolution monitoring
 - Node-board granularity (32 nodes)

LULESH
- Explicit hydrodynamics mini-application
- Five code regions

Optimal memory speed is a function of problem size, concurrency, and code region / kernel

Predicting the Optimal Memory Throttling
- Linear regression model based on HW counters
 - CPU cycles, instructions
 - LSU load/store misses
 - L2 cache misses, prefetching, loads/stores
- Initial model
 \[f_{\text{min}} = \sum_{i=1}^{n} \left(w_i \cdot \text{counter}_{i} / \text{CPUCycles} \right) \]
- Revised model
 \[f_{\text{min}} = \sum_{i=1}^{n} \left(w_i \cdot \text{counter}_{i} / \text{CPUCycles} \right) + w_{\text{comp}} \cdot \text{mem} \]

Conclusions & Future Work
- Significant power shifting opportunities with model-based throttling
 - Memory throttling applied on a per-region or per-kernel basis
 - Model predictions result in low performance degradation
 - Savings of up to 20% dynamic power with 3% performance cost
- Future work
 - Study a broader set of applications
 - Shift power on architectures with other throttling capabilities
 - Evaluate non-linear models based on machine learning

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-POST-658188.