

Space-filling Curves for Domain Decomposition in Scientific Simulations

What are Space-filling Curves(SFC)?

- A space-filling curve $F: \mathbb{R} \rightarrow \mathbb{R}^d$ provides a mapping from points on the curve to points in d-dimensional space.
- F^{-1} can be used to create a locality preserving order of points in higher dimensions.
- The curve can be sliced into *p* pieces to create *p* partitions.
- Example : Hilbert Curve¹ defined on 16 equi-distant points on a plane

Why are we interested in Space-filling Curves?

- Less space and time overheads.
- Existing algorithms are dependent on the shape and size of the domain. Eg: Hilbert curve can only be generated for symmetric domains with dimension a power of 2.
- Morton order(Z-order) is a general technique, has poor locality :

Therefore, there is need for a general SFC with good locality that can be used to partition meshes of arbitrary shapes and sizes.

Aparna Sasidharan, Marc Snir University of Illinois, Urbana-Champaign

Applications and Results

For the 2D SFC, we used meshes from the Community Earth System Model (CESM) as test cases. They include : structured, block structured adaptive, unstructured and unstructured adaptive

Partitioning time of the SFC algorithm vs the direct k-way algorithm of Metis. E.g: Partitioning time for the 30km unstructured atmosphere mesh

Compared the quality of partitions with respect to their maximum volume (computational load) and maximum surface area(communication load)

Quality of partitions generated by the SFC for a structured 2D atmosphere mesh with 1152 longitudes and 768 latitudes.

	Direct K-way		SFC		
#procs	Max Load	Max Surf Area	Max Load	Max Surf Area	
512	1751	258	1728	188	
1000	905	207	885	202	
1024	889	198	864	117	
2048	444	134	432	92	
4096	222	91	216	56	
8192	111	64	108	44	

Quality of partitions for an unstructured atmosphere mesh from the MPAS model.

SFC partition of the northern hemisphere and comparison with Metis for the 30km unstructured MPAS mesh.

WRF.

SFC partition of 61X74 WRF grid with one nested domain of size 97X112 and comparison with Z-order

Max

Surf

218

172

124

98

96

85

Applications and Results (contd.)

		Direct k-way		SFC	
	#procs	Max Load	Max Surf Area	Max Load	Max Surf Area
	512	1308	172	1281	174
	1024	659	143	641	124
	2048	329	88	321	90
	4096	164	61	161	62
	8192	82	39	81	43

Quality of partitions for a block structured adaptive mesh from

	Z-order			SF
	#procs	Max Load	Max Surf	Ma: Loa
	8	1765	241	176
	16	882	185	882
	40	353	136	353
	50	282	116	282
	64	220	98	220
	80	176	90	176

Conclusions & Future Work

- SFCs seem to be a good option to generate good quality partitions quickly and with less overhead

- We are currently working on further improving the quality of partitions using refined performance models of the applications