Summary

- Faults are becoming common
- Conventional checkpoint-and-recovery (CPR) is inefficient and not scalable
- Our approach: Globally Precise Restartability
- Uses deterministic execution, or ordered programs
- Order threads (tasks) at synchronization points
- Checkpoint at task boundaries
- Selectively restart only affected tasks
- Performs globally

Our Approach

- Globally precise restartable recovery system (GPRS): C++ runtime library
- End-to-end fault recovery: user program (Pthreads, Ordered2) + runtime system + I/O + system calls
- Tracks and releases task checkpoints in order; Restores and restarts faulted tasks

Key Principles

- Use deterministic execution, or ordered programs
- Order threads (tasks) at synchronization points
- Checkpoint at task boundaries
- Selectively restart only affected tasks

Creating Order

- Round-robin across threads in program text
- Balance-aware ordering to minimize performance loss

Future Directions

- Apply principles to larger systems; test design scalability
- Use distributed runtime data structures, hierarchical design
- Combine with other techniques, e.g., containment domain[s]}

Effective execution at no overheads

Scalable fault-tolerance with system size

Conventional Approach

- Checkpoint all threads periodically; Recover when necessary

Faults in Parallel Systems

- "Local"
 - Affects a single thread
 - Handled locally on a processor
- "Global"
 - Focus of this work
 - Affects multiple threads
 - Cannot be handled locally

Evaluation

Scalable Fault Tolerance in Multiprocessor Systems

Gagan Gupta (Advisor: Gurindar S. Sohi)

(gagang, sohi)@cs.wisc.edu