SITY oF Comparing Decoupled 1/O Kernels versus Real Traces in the 1/0 Analysis

of the HACC Scientific Application on Large-Scale Systems
EIAW. Student: Sean McDaniel, University of Delaware RID GE

Advisors: Hai Ah Nam, Oak Ridge National Laboratory National Laboratory

RESULTS

Synthetic benchmarks have been found inadequate in comparison to real-world applications as large
scale end-to-end system stressors. HPC 1I/O benchmarking solutions IOR and 10Zone have NOT
provided the end-to-end stressors that are needed to test the file system stability, particularly at
large scale. Using real-world applications for testing and tuning is not always feasible because of HACC uses N-body methods to S N R
their long runtimes and the short testing windows on production systems. The lack in adequate simulate the formation of 1 N AT AN (U N
solutions for stressing systems has increased efforts to extract 1/0O kernels from scientific ~ Structures under the influence of
applications. However, there does not exist a successful methodology for extracting 1/0 and 8ravity in an expanding universe. L gLl e —

communication codes from scientific applications HACC and HACC-IO (a decoupled I/ | -
PP | O kernel) are provided as CORAL 2° NI AR

GOAL benchmark test applications. The : | l | |il 1 Hl]] l “l Ll | -
. . . R L e . LU0 HE Ik
* Validate the decoupled I/O kernel of the Hardware Accelerated Cosmology Code application CQRAL benchmarks are used to e o

(HACC-10) to determine whether it reliably mimics the /0 patterns of the real HACC application guide the procurement for pre-) .
exascale computing resources. Number of tasks accessing checkpoint HACC I/O average output data per

* HACC-IO patterns can facilitate and support future 1/0O kernel extraction and tuning varies by time steps checkpoint has similar HACC's trends

Hardware Accelerated
Cosmology Code (HACC) P

Average Checkpointing Output

Time Step 30 < 2000000

Time Step 80
ooooooo

Different checkpoint times across
checkpoint files

HACC VS. HACC'IO Stage 1 M ETHODO LOGY Seq., Consec., and Total Writes
Initialization Writes, Opens, and Seeks Times 4500
Topology 5000
HACC Time Step Work Flow * Use Darshan 1/0O tool to study the I/ Darshan provides a big o

L O pattern and file access for both picture of application 1/0
* Stage 1: Initialize Topology HACE and HACC-IO

= Duplicates communicator Darchan inst fation ic i fod VampirTrace analyzes
« Create Partiions arshan instrumentation is inserte network activity closer at

at build time and captures the
* Stage 2: Read input data file D a more granular level

“HACC

OPs (Avg Per Time Step)
(]
o0
.

“HACCI/O

2000 1000

— e behavior of both POSIX I/O and MPI-
- Specrﬁes Inltlal parameters IO methods All Processes, Accumulated Exclusive Time per Function 3000 , , , 70
. °«, o . 600 s 300s Os i 0
* Stage 3: Inlhallgg geometry * Use Vampire to analyze MP! e — T - o
= 3D decomposition of Box communication in HACC and O ; - Approx. 99.2 % of HACC’s 1/O is
* Stage 4: Instantiate Particles : 9"5%mil—ﬁ§d“°e HACC I/O performs a disproportionate sequential or consecutive, compared to
HACC_IO When runnlng On up to 6.68 si Res_tanlo_GLEAN:...nt(char*, longé&)

Stage 4. .
. ; : 4101 s| sync time
Instantiate Particles 2048 nodes of Titan 0.944 5| RestarlO_GLEA . POSIX_Create(

0759 s| MPI_Comm_dup

amount of seeks as compared to HACC approx. 89% of HACC I/0O

* Stage 5: Computation

= Host side Long range FFT calculations : |
Example of VampirTrace Function Time — HACC-IO

= Architecture specific short range : Analvsis
calculations run on GPU Metrics Y

* Stage 6: Write restart file oo * Metrics of interest with Darshan: * Similarities between HACC and HACC-IO:

P = Checkpoint write time: time spent writing restart files during the life = HACC-10 and HACC show comparable average checkpoint data output
The purpose of HACC-IO is to evaluate time of our HACC run * Discrepancies between HACC and HACC-10:

= A Checkpointing Output: data size in relation t ber of . - i i i ing i

the performance of the 1/O system p;’jg:sgsees eckpointing Vutput: data size In relation 1o number o rHnAO(rZeC ;gelssct;;?] ile:élgntlal and consecutive |/O, causing it to perform
z:g:&izlzlhferci% ?:Et(;rr:tc;: I;n;ggded 0 = Writes, Opens, and Seeks Times: number of writes open and seeks » HACC-IO average output file size is not reflective of HACC output files
HACC-IO shows ' performed by HACC and HACC-1/O when writing restart files * Reasoning for discrepancies:

= Seq., Consec., and Total Writes: number of sequential, consecutive = HACC-10 lacks an effective partitioning scheme and does not include
and total writes performed by HACC and HACC-I/O aggregation

* Metrics of interest with VampirTrace: = Adding improved partitioning scheme is work in progress
= Accumulated exclusive time per function

= Communication matrix of process message passing

* A known data pattern is written out
as a checkpoint Stage 1:

Initialization

* The checkpoint data of the known Partitions

pattern is read back in and verified
with the known pattern

HACC-IO Time Step Work Flow

* Stage 1: Initialize 1
= Duplicates communication
= (Create Partitions

* Stage 2: Create Checkpoint
= MPI Allreduce on particles Stage 4:
= Stage 3: Write Checkpoint Checkpoint
= Write using POSIX I/O Validation

* Stage 4: Read Checkpoint
= Read back to verify content

* Stage 5: Close Checkpoint

CONCLUSION AND FUTURE WORK

Tests and Platform Setup * We critically compare and contrast HACC-10 versus HACC and show
* We use the Gordon Bell Prized scaling test to analyze HACC similarities and discrepancies in their /O patterns

and HACC-I/O patterns on: * HACC-IO falls short in mimicking data output per file and 1/O patterns

» 128 Nodes - 4.096 x 10° Particles * The discrepancies provide new research opportunities:
= 256 Nodes - 8.590 x 10° Particles = Correct HACC-I/0O to reliably mimicking HACC

« 512 Nodes - 1.6778 x 100 Particles = Study I/O aspects of HACC (e.g., aggregation) by using HACC-I/O

= 1024 Nodes - 3.2768 x 10° Particles X SR
= 2048 Nodes - 6.8719 x 1019 Particles — :

Acknowledgements

* \We run the tests on Titan with This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of
Advanced Scientific computing Research and performed at the Oak Ridge National Laboratory, which is

7

e QI*OQIOVH —n—

* Stage 6: Finalize aplal iz “’"’5*:"’* INERNEYR this simulation setting: managed by UT-Battelle, LLC under Contract No. DE-AC05-000R22725. This research used resources of the
5 ' o M!V 1L Ul | s L = Number of cores: 128 up to 2048 Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility. | would like to lastly
- Desiroy plarglt:ons - . sk : Lt L » 1 MPI processes per node and 16 thank Dr. Michela Taufer for all her guidance and mentorship.
estroy global communicator Finalize OpenMP threads per process FR v oceaxruentor | Office of AV 22 oo wsrmure ron ORALT
© ENERGY <. AV} scice o envcamon Al

