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RESULTS

Synthetic benchmarks have been found inadequate in comparison to real-world applications as large
scale end-to-end system stressors. HPC 1I/O benchmarking solutions IOR and 10Zone have NOT
provided the end-to-end stressors that are needed to test the file system stability, particularly at
large scale. Using real-world applications for testing and tuning is not always feasible because of HACC uses N-body methods to S N R
their long runtimes and the short testing windows on production systems. The lack in adequate simulate the formation of 1 N AT AN (U N
solutions for stressing systems has increased efforts to extract 1/0O kernels from scientific ~ Structures under the influence of
applications. However, there does not exist a successful methodology for extracting 1/0 and  8ravity in an expanding universe. L gLl e —

communication codes from scientific applications HACC and HACC-IO (a decoupled I/ | -
PP | O kernel) are provided as CORAL 2° NI AR
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* Validate the decoupled I/O kernel of the Hardware Accelerated Cosmology Code application CQRAL benchmarks are used to e o

(HACC-10) to determine whether it reliably mimics the /0 patterns of the real HACC application guide the procurement for pre- ) .
exascale computing resources. Number of tasks accessing checkpoint HACC I/O average output data per

* HACC-IO patterns can facilitate and support future 1/0O kernel extraction and tuning varies by time steps checkpoint has similar HACC's trends
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HACC Time Step Work Flow * Use Darshan 1/0O tool to study the I/ Darshan provides a big o

L O pattern and file access for both picture of application 1/0
* Stage 1: Initialize Topology HACE and HACC-IO

= Duplicates communicator Darchan inst fation ic i fod VampirTrace analyzes
« Create Partiions arshan instrumentation is inserte network activity closer at

at build time and captures the
* Stage 2: Read input data file D a more granular level

“HACC

OPs (Avg Per Time Step)
(]
o0
.

“HACCI/O

2000 1000

— e behavior of both POSIX I/O and MPI-
- Specrﬁes Inltlal parameters IO methods All Processes, Accumulated Exclusive Time per Function 3000 , , , 70
. °«, o . 600 s 300s Os i 0
* Stage 3: Inlhallgg geometry * Use Vampire to analyze MP! e — T - o
= 3D decomposition of Box communication in HACC and O ; - Approx. 99.2 % of HACC’s 1/O is
* Stage 4: Instantiate Particles : 9"5%mil—ﬁ§d“°e HACC I/O performs a disproportionate sequential or consecutive, compared to
HACC_IO When runnlng On up to 6.68 si Res_tanlo_GLEAN:...nt(char*, longé&)

Stage 4. .
. ; : 4101 s| sync time
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amount of seeks as compared to HACC approx. 89% of HACC I/0O

* Stage 5: Computation

= Host side Long range FFT calculations : |
Example of VampirTrace Function Time — HACC-IO

= Architecture specific short range : Analvsis
calculations run on GPU Metrics Y

* Stage 6: Write restart file oo * Metrics of interest with Darshan: * Similarities between HACC and HACC-IO:

P = Checkpoint write time: time spent writing restart files during the life = HACC-10 and HACC show comparable average checkpoint data output
The purpose of HACC-IO is to evaluate time of our HACC run * Discrepancies between HACC and HACC-10:

= A Checkpointing Output: data size in relation t ber of . - i i i ing i

the performance of the 1/O system p;’jg:sgsees eckpointing Vutput: data size In relation 1o number o rHnAO(rZeC ;gelssct;;?] ile:élgntlal and consecutive |/O, causing it to perform
z:g:&izlzlhferci% ?:Et(;rr:tc;: I;n;ggded 0 = Writes, Opens, and Seeks Times: number of writes open and seeks » HACC-IO average output file size is not reflective of HACC output files
HACC-IO shows ' performed by HACC and HACC-1/O when writing restart files * Reasoning for discrepancies:

= Seq., Consec., and Total Writes: number of sequential, consecutive =  HACC-10 lacks an effective partitioning scheme and does not include
and total writes performed by HACC and HACC-I/O aggregation

* Metrics of interest with VampirTrace: = Adding improved partitioning scheme is work in progress
= Accumulated exclusive time per function

= Communication matrix of process message passing

* A known data pattern is written out
as a checkpoint Stage 1:

Initialization

* The checkpoint data of the known Partitions

pattern is read back in and verified
with the known pattern

HACC-IO Time Step Work Flow

* Stage 1: Initialize 1
= Duplicates communication
= (Create Partitions

* Stage 2: Create Checkpoint
=  MPI Allreduce on particles Stage 4:
= Stage 3: Write Checkpoint Checkpoint
= Write using POSIX I/O Validation

* Stage 4: Read Checkpoint
= Read back to verify content

* Stage 5: Close Checkpoint

CONCLUSION AND FUTURE WORK

Tests and Platform Setup * We critically compare and contrast HACC-10 versus HACC and show
* We use the Gordon Bell Prized scaling test to analyze HACC similarities and discrepancies in their /O patterns

and HACC-I/O patterns on: * HACC-IO falls short in mimicking data output per file and 1/O patterns

» 128 Nodes - 4.096 x 10° Particles * The discrepancies provide new research opportunities:
= 256 Nodes - 8.590 x 10° Particles =  Correct HACC-I/0O to reliably mimicking HACC

« 512 Nodes - 1.6778 x 100 Particles = Study I/O aspects of HACC (e.g., aggregation) by using HACC-I/O

= 1024 Nodes - 3.2768 x 10° Particles X SR
= 2048 Nodes - 6.8719 x 1019 Particles — :
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