BEGIN:VCALENDAR
PRODID:-//Microsoft Corporation//Outlook MIMEDIR//EN
VERSION:1.0
BEGIN:VEVENT
DTSTART:20141118T231500Z
DTEND:20141119T010000Z
LOCATION:New Orleans Theater Lobby
DESCRIPTION;ENCODING=QUOTED-PRINTABLE:ABSTRACT: Recently, data models have become more complex leading to the need for multi-dimensional representations to express the data in a more meaningful way. Commonly, tensors are used to represent such data and multi-linear algebra, the math associated with tensors, has become essential for tackling problems in big data and scientific computing. Up to now, the main approach to solving problems of multi-linear algebra has been based on mapping the multi-linear algebra to linear algebra and relying on highly efficient linear algebra libraries to perform the equivalent computation. Unfortunately, there are inherent inefficiencies associated with this approach. In this work, we define a notation for tensor computations performed on distributed-memory architectures. Additionally, we show how, using the notation, algorithms can be systematically derived, required collective communications identified, and approximate costs analyzed for a given tensor contraction operation.
SUMMARY:A Framework for Distributed Tensor Computations
PRIORITY:3
END:VEVENT
END:VCALENDAR